Skip to main content


Showing posts from July, 2017

Exploring Modern Deposition Techniques

We're all familiar with conventional deposition techniques, the most popular being CVD, but what are the other methods/ways currently under research?

HiTUS DepositionHiTUS ("high-target-utilization sputtering") is classified under sputter deposition, where plasma is used - making the ion current independent of the applied voltage. This PVD process differs from CVD as it uses a liquid or solid source (in this case plasma) to eject material from a "target" (typically a metal alloy for thin film applications such as TFTs) towards the substrate.
The HiTUS system produces a high-density magnetized plasma in the order of 10^13 ions per cubic centimeter. Control is achieved by manipulating the following variables: RF power, DC power, and process pressure. Major benefits of such a process include the ability to coat with a fast deposition rate, high density films onto temp. sensitive polymeric materials. 
PECVDPECVD ("plasma-enhanced chemical vapor deposition") …

Digitally Assisted Analog Circuits Unraveled

It may be the first time you've heard of the term, with function implied by semantics. But what are digitally assisted analog circuits? How do they perform or give "assistance" to the analog part exactly? What are their advantages and disadvantages? Does this field have any potential in emerging technologies (in my opinion they do, which is why I've decided to write all about them in this article).
Before anything else, a proper background to digitally assisted analog circuits is in order (what a mouthful! I'll be writing this as DAAC or DAA for short throughout the article).  
It all started when scaled CMOS technology began progressing rapidly, challenges in analog design becoming more difficult to surmount. Remember that with decreasing area, precision decreases and devices become more nonlinear. In addition, estimates show advances in the digital sector equating to 3 times longer in analog for catching up. Obviously, there was a burgeoning demand for a solution…

Yay or Nay? A Closer Look at AnDapt’s PMIC On-Demand Technology

Innovations on making product features customizable are recently gaining popularity. Take Andapt for example, a fabless start-up that unveiled its Multi-Rail Power Platform technology for On-Demand PMIC applications a few months back. (read all about it here: Will PMIC On-Demand Replace Catalog Power Devices?) Their online platform, WebAmp, enables the consumer to configure the PMIC based on desired specifications. Fortunately, I got a hands-on experience during the trial period (without the physical board (AmP8DB1) or adaptor (AmpLink)). In my opinion, their GUI is friendly but it lacks a verification method for tuning (i.e. the entered combination of specs). How would we know if it will perform as expected or if there are contradicting indications that yield queer behavior? Also, there is not just one IP available, but many that cater to a differing number of channels and voltage requirements (each with their own price tag).
Every new emerging technology has the potential to oversh…